Python统计数据模型:使用时间序列的ARIMA模型的帮
本文介绍了Python统计数据模型:使用时间序列的ARIMA模型的帮助的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
统计模型公司的ARIMA对我的输出给出了不准确的答案。我想知道是否有人可以帮助我了解我的代码出了什么问题。
这是一个示例:
import pandas as pd
import numpy as np
import datetime as dt
from statsmodels.tsa.arima_model import ARIMA
# Setting up a data frame that looks twenty days into the past,
# and has linear data, from approximately 1 through 20
counts = np.arange(1, 21) + 0.2 * (np.random.random(size=(20,)) - 0.5)
start = dt.datetime.strptime("1 Nov 01", "%d %b %y")
daterange = pd.date_range(start, periods=20)
table = {"count": counts, "date": daterange}
data = pd.DataFrame(table)
data.set_index("date", inplace=True)
print data
count
date
2001-11-01 0.998543
2001-11-02 1.914526
2001-11-03 3.057407
2001-11-04 4.044301
2001-11-05 4.952441
2001-11-06 6.002932
2001-11-07 6.930134
2001-11-08 8.011137
2001-11-09 9.040393
2001-11-10 10.097007
2001-11-11 11.063742
2001-11-12 12.051951
2001-11-13 13.062637
2001-11-14 14.086016
2001-11-15 15.096826
2001-11-16 15.944886
2001-11-17 17.027107
2001-11-18 17.930240
2001-11-19 18.984202
2001-11-20 19.971603
其余代码建立ARIMA模型。
# Setting up ARIMA model
order = (2, 1, 2)
model = ARIMA(data, order, freq='D')
model = model.fit()
print model.predict(1, 20)
2001-11-02 1.006694
2001-11-03 1.056678
2001-11-04 1.116292
2001-11-05 1.049992
2001-11-06 0.869610
2001-11-07 1.016006
2001-11-08 1.110689
2001-11-09 0.945190
2001-11-10 0.882679
2001-11-11 1.139272
2001-11-12 1.094019
2001-11-13 0.918182
2001-11-14 1.027932
2001-11-15 1.041074
2001-11-16 0.898727
2001-11-17 1.078199
2001-11-18 1.027331
2001-11-19 0.978840
2001-11-20 0.943520
2001-11-21 1.040227
Freq: D, dtype: float64
如您所见,数据只是在1
附近保持不变,而不是增加。我在这里做错了什么?
(顺便提一句,由于某些原因,我不能将"2001-11-21"
这样的字符串日期传递到预测函数中。如果能知道原因会很有帮助。)
推荐答案
TL;DR
您使用predict
的方式返回线性预测
差异内生变量不是对原始内生变量水平的预测。
您必须向predict
方法提供typ='levels'
才能更改此行为:
preds = fit.predict(1, 30, typ='levels')
详情请参见ARIMAResults.predict
文档。
分步
数据集
我们加载您在MCVE中提供的数据:
import io
import pandas as pd
raw = io.StringIO("""date count
2001-11-01 0.998543
2001-11-02 1.914526
2001-11-03 3.057407
2001-11-04 4.044301
2001-11-05 4.952441
2001-11-06 6.002932
2001-11-07 6.930134
2001-11-08 8.011137
2001-11-09 9.040393
2001-11-10 10.097007
2001-11-11 11.063742
2001-11-12 12.051951
2001-11-13 13.062637
2001-11-14 14.086016
2001-11-15 15.096826
2001-11-16 15.944886
2001-11-17 17.027107
2001-11-18 17.930240
2001-11-19 18.984202
2001-11-20 19.971603""")
data = pd.read_fwf(raw, parse_dates=['date'], index_col='date')
正如我们可能预期的那样,数据是自相关的:
from pandas.plotting import autocorrelation_plot
autocorrelation_plot(data)
模型与培训
我们为给定的设置(P,D,Q)
创建ARIMA
Model对象,并使用fit
方法训练它:
from statsmodels.tsa.arima_model import ARIMA
order = (2, 1, 2)
model = ARIMA(data, order, freq='D')
fit = model.fit()
它返回感兴趣的ARIMAResults
对象。我们可以检查我们模型的质量:
fit.summary()
ARIMA Model Results
==============================================================================
Dep. Variable: D.count No. Observations: 19
Model: ARIMA(2, 1, 2) Log Likelihood 25.395
Method: css-mle S.D. of innovations 0.059
Date: Fri, 18 Jan 2019 AIC -38.790
Time: 07:54:36 BIC -33.123
Sample: 11-02-2001 HQIC -37.831
- 11-20-2001
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const 1.0001 0.014 73.731 0.000 0.973 1.027
ar.L1.D.count -0.3971 0.295 -1.346 0.200 -0.975 0.181
ar.L2.D.count -0.6571 0.230 -2.851 0.013 -1.109 -0.205
ma.L1.D.count 0.0892 0.208 0.429 0.674 -0.318 0.496
ma.L2.D.count 1.0000 0.640 1.563 0.140 -0.254 2.254
Roots
==============================================================================
Real Imaginary Modulus Frequency
------------------------------------------------------------------------------
AR.1 -0.3022 -1.1961j 1.2336 -0.2894
AR.2 -0.3022 +1.1961j 1.2336 0.2894
MA.1 -0.0446 -0.9990j 1.0000 -0.2571
MA.2 -0.0446 +0.9990j 1.0000 0.2571
------------------------------------------------------------------------------
我们可以粗略估计残差是如何分布的:
residuals = pd.DataFrame(fit.resid, columns=['residuals'])
residuals.plot(kind='kde')
预测
如果我们对我们的模型满意,那么我们可以预测一些样本内或样本外的数据。
这可以使用predict
方法完成,该方法默认返回差异内生变量,而不是内生变量本身。若要更改此行为,必须指定typ='levels'
:
preds = fit.predict(1, 30, typ='levels')
那么我们的预测与我们的训练数据具有相同的级别:
此外,如果我们还想要有置信度区间,则可以使用forecast
方法。
字符串参数
也可以向predict
提供字符串(如果希望避免麻烦,请始终使用ISO-8601格式)或datetime
对象:
preds = fit.predict("2001-11-02", "2001-12-15", typ='levels')
在StatsModels 0.9.0上按预期工作:
import statsmodels as sm
sm.__version__ # '0.9.0'
这篇关于Python统计数据模型:使用时间序列的ARIMA模型的帮助的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!