格式化多维数组 Python
本文介绍了格式化多维数组 Python的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何编写代码,在出现负值后立即将多维数组 a
中每个单独数组的值更改为零.因此,a
中的第二个数组的负值 [12,34,5,6,88,-10,30,75]
为 -10,它会将所有该值和紧随其后的值为零.将数组转换为 [12,34,5,6,88,0,0,0]
.我怎样才能获得预期的输出?
How can I write a code that changes the values of each individual arrays within the multidimensional array a
to zeroes right after there was a negative value. So the second array within a
has a negative value [12,34,5,6,88,-10,30,75]
of -10 that would turn all the values of that and the values right after it to zeroes. Turning the array into [12,34,5,6,88,0,0,0]
. How would I be able to get my Expected Output?
import numpy as np
a = np.array([[12,45,50,60,30],
[12,34,5,6,88,-10,30,75],
[3,45,332,45,-12,-4,-64,12],
[12,45,3,22,323]])
预期输出:
[[12,45,50,60,30],
[12,34,5,6,88,0,0,0],
[3,45,332,45,0,0,0,0],
[12,45,3,22,323]]
推荐答案
试试这个:
import numpy as np
a = np.array([[12,45,50,60,30],
[12,34,5,6,88,-10,30,75],
[3,45,332,45,-12,-4,-64,12],
[12,45,3,22,323]], dtype='object')
for l in a:
for i in l:
if i<0:
l[l.index(i):] = [0] * len(l[l.index(i):])
a
输出:
array([list([12, 45, 50, 60, 30]), list([12, 34, 5, 6, 88, 0, 0, 0]),
list([3, 45, 332, 45, 0, 0, 0, 0]), list([12, 45, 3, 22, 323])],
dtype=object)
第二种解决方案:
import numpy as np
def neg_to_zero(l):
for i in l:
if i<0:
l[l.index(i):] = [0] * len(l[l.index(i):])
a = np.array([[12,45,50,60,30],
[12,34,5,6,88,-10,30,75],
[3,45,332,45,-12,-4,-64,12],
[12,45,3,22,323]], dtype='object')
list(map(neg_to_zero, a))
a
这篇关于格式化多维数组 Python的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!