有什么办法可以扁平化电光流媒体中的嵌套JSON吗?

  
本文介绍了有什么办法可以扁平化电光流媒体中的嵌套JSON吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我已经编写了一个数据集火花作业(批处理)代码来扁平化数据,运行正常,但当我尝试在火花流作业中使用相同的代码片段时,它抛出以下错误 必须使用WriteStream.start();执行具有流来源的查询 那么,有什么方法可以在流作业中展平嵌套的JSON吗? 样本输入嵌套JSON-
{
   "name":" Akash",
   "age":26,
   "watches":{
      "name":"Apple",
      "models":[
         "Apple Watch Series 5",
         "Apple Watch Nike"
      ]
   },
   "phones":[
      {
         "name":" Apple",
         "models":[
            "iphone X",
            "iphone XR",
            "iphone XS",
            "iphone 11",
            "iphone 11 Pro"
         ]
      },
      {
         "name":" Samsung",
         "models":[
            "Galaxy Note10",
            "Galaxy Note10+",
            "Galaxy S10e",
            "Galaxy S10",
            "Galaxy S10+"
         ]
      },
      {
         "name":" Google",
         "models":[
            "Pixel 3",
            "Pixel 3a"
         ]
      }
   ]
}

预期输出。 output after falttening

下面是代码片段。

private static org.apache.spark.sql.Dataset flattenJSONdf(
            org.apache.spark.sql.Dataset<org.apache.spark.sql.Row> ds) {
        org.apache.spark.sql.types.StructField[] fields = ds.schema().fields();
        java.util.List<String> fieldsNames = new java.util.ArrayList<>();
        for (org.apache.spark.sql.types.StructField s : fields) {
            fieldsNames.add(s.name());
        }

        for (int i = 0; i < fields.length; i++) {

            org.apache.spark.sql.types.StructField field = fields[i];
            org.apache.spark.sql.types.DataType fieldType = field.dataType();
            String fieldName = field.name();

            if (fieldType instanceof org.apache.spark.sql.types.ArrayType) {
                java.util.List<String> fieldNamesExcludingArray = new java.util.ArrayList<String>();
                for (String fieldName_index : fieldsNames) {
                    if (!fieldName.equals(fieldName_index))
                        fieldNamesExcludingArray.add(fieldName_index);
                }

                java.util.List<String> fieldNamesAndExplode = new java.util.ArrayList<>(
                        fieldNamesExcludingArray);
                String s = String.format("explode_outer(%s) as %s", fieldName,
                        fieldName);
                fieldNamesAndExplode.add(s);

                String[] exFieldsWithArray = new String[fieldNamesAndExplode
                        .size()];
                org.apache.spark.sql.Dataset exploded_ds = ds
                        .selectExpr(fieldNamesAndExplode
                                .toArray(exFieldsWithArray));

                // explodedDf.show();

                return flattenJSONdf(exploded_ds);

            } else if (fieldType instanceof org.apache.spark.sql.types.StructType) {

                String[] childFieldnames_struct = ((org.apache.spark.sql.types.StructType) fieldType)
                        .fieldNames();

                java.util.List<String> childFieldnames = new java.util.ArrayList<>();
                for (String childName : childFieldnames_struct) {
                    childFieldnames.add(fieldName + "." + childName);
                }

                java.util.List<String> newfieldNames = new java.util.ArrayList<>();
                for (String fieldName_index : fieldsNames) {
                    if (!fieldName.equals(fieldName_index))
                        newfieldNames.add(fieldName_index);
                }

                newfieldNames.addAll(childFieldnames);

                java.util.List<org.apache.spark.sql.Column> renamedStrutctCols = new java.util.ArrayList<>();

                for (String newFieldNames_index : newfieldNames) {
                    renamedStrutctCols.add(new org.apache.spark.sql.Column(
                            newFieldNames_index.toString())
                            .as(newFieldNames_index.toString()
                                    .replace(".", "_")));
                }

                scala.collection.Seq renamedStructCols_seq = scala.collection.JavaConverters
                        .collectionAsScalaIterableConverter(renamedStrutctCols)
                        .asScala().toSeq();

                org.apache.spark.sql.Dataset ds_struct = ds
                        .select(renamedStructCols_seq);

                return flattenJSONdf(ds_struct);
            }

        }
        return ds;
    }

推荐答案

Note代码位于scala&;我已使用Spark Structured Streaming

可以使用org.apache.spark.sql.functions.explode函数展平数组列。请检查以下代码。

import org.apache.spark.sql.types._

val schema = DataType.fromJson("""{"type":"struct","fields":[{"name":"age","type":"long","nullable":true,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}},{"name":"phones","type":{"type":"array","elementType":{"type":"struct","fields":[{"name":"models","type":{"type":"array","elementType":"string","containsNull":true},"nullable":true,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}}]},"containsNull":true},"nullable":true,"metadata":{}},{"name":"watches","type":{"type":"struct","fields":[{"name":"models","type":{"type":"array","elementType":"string","containsNull":true},"nullable":true,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}}]},"nullable":true,"metadata":{}}]}""").asInstanceOf[StructType]
// schema: org.apache.spark.sql.types.StructType = StructType(StructField(age,LongType,true), StructField(name,StringType,true), StructField(phones,ArrayType(StructType(StructField(models,ArrayType(StringType,true),true), StructField(name,StringType,true)),true),true), StructField(watches,StructType(StructField(models,ArrayType(StringType,true),true), StructField(name,StringType,true)),true))

val streamDF = spark.readStream.format("json").schema(schema).load("/tmp/jdata")
// streamDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string ... 2 more fields]

streamDF
.withColumn("watches_models",explode($"watches.models")).withColumn("watches_name",$"watches.name")
.withColumn("phones_models",explode($"phones.models")).withColumn("phones_models",explode($"phones_models"))
.withColumn("phones_name",explode($"phones.name"))
.drop("watches","phones")
.writeStream
.format("console")
.outputMode("append")
.start()
.awaitTermination()
-------------------------------------------
Batch: 0
-------------------------------------------
+---+------+--------------------+------------+--------------+-----------+
|age|  name|      watches_models|watches_name| phones_models|phones_name|
+---+------+--------------------+------------+--------------+-----------+
| 26| Akash|Apple Watch Series 5|       Apple|      iphone X|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple|      iphone X|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple|      iphone X|     Google|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XR|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XR|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XR|     Google|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XS|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XS|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone XS|     Google|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone 11|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone 11|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple|     iphone 11|     Google|
| 26| Akash|Apple Watch Series 5|       Apple| iphone 11 Pro|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple| iphone 11 Pro|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple| iphone 11 Pro|     Google|
| 26| Akash|Apple Watch Series 5|       Apple| Galaxy Note10|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple| Galaxy Note10|    Samsung|
| 26| Akash|Apple Watch Series 5|       Apple| Galaxy Note10|     Google|
| 26| Akash|Apple Watch Series 5|       Apple|Galaxy Note10+|      Apple|
| 26| Akash|Apple Watch Series 5|       Apple|Galaxy Note10+|    Samsung|
+---+------+--------------------+------------+--------------+-----------+
only showing top 20 rows

这篇关于有什么办法可以扁平化电光流媒体中的嵌套JSON吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

相关文章